640px-Cryst_struct_teo2

Los libros modernos de cristalografía suelen comenzar con una versión simplificada del concepto puramente matemático (de teoría de grupos y geometría) de retículo: una malla o celda unidad que es capaz de ocupar todo el espacio sin dejar huecos ni superponerse (esta es la definición de teselación en tres dimensiones). Sin embargo, los libros de texto de mediados del siglo XX y anteriores que tienen un enfoque más macroscópico de la cristalografía, suelen reflejar más pronto que tarde la que se llama Primera Ley de la Cristalografía, a saber, “los ángulos entre dos caras correspondientes de un cristal de cualquier especie química son constantes y característicos de la especie”. Esta ley fue la primera afirmación científica de la cristalografía y, aunque hoy nos pueda parecer una obviedad digna de Pero Grullo, se necesitaron nada menos que dos milenios de observaciones cristalográficas para establecerla.

Efectivamente, las observaciones del aspecto de los cristales de cualquier sustancia afirmaban que su forma no era constante, por lo que era de esperar que los ángulos entre sus caras tampoco lo fuesen. Bien entrado el siglo XVI Conrad Gessner escribía en De rerum fossilium, lapidum et gemmarium (1564) que “un cristal difiere de otro en sus ángulos y, por consiguiente, en su figura”. Se necesitó un observador de la naturaleza excepcional para ver más allá de la apariencia, Niels Steensen.

Portrait_of_Nicolas_Stenonus

Steensen (más conocido por la versión latina de su nombre, Nicolaus Steno), fue hijo de un orfebre de Copenhague pero, en vez de continuar con el negocio familiar, decidió estudiar medicina (puede que motivado por la epidemia que mató a 200 compañeros de escuela de Steensen entre 1654 y 1655) y terminó realizando descubrimientos anatómicos importantes. Con todo, algo debió de quedarle de vocación paterna porque durante sus estudios médicos siguió coleccionando fósiles, piedras preciosas y minerales en general. En 1661 dejó su Dinamarca natal y, tras pasar un tiempo en los países bajos y Francia, terminó asentándose en Italia en 1666.

El mismo año de su llegada se capturó un enorme tiburón hembra cerca de Livorno y Steensen tuvo la oportunidad de diseccionar la cabeza del animal. Se dio cuenta de que los dientes del tiburón se parecían mucho a ciertos objetos que aparecían dentro de rocas, conocidos en esa época como glossopetrae (lenguas de roca o, mejor, rocas con lengua). Steensen llegó a la conclusión de que las glossopetrae no eran otra cosa que dientes de tiburón petrificados.

Stenoshark

Este hallazgo le llevó a a considerar la cuestión de qué forma podía terminar un objeto sólido (como el diente de un tiburón) dentro de otro sólido (una roca). En lo que se refiere a cristales Steensen se concentró exclusivamente en el cuarzo y la hematita. A pesar de lo limitado de su enfoque, sus conclusiones tuvieron un enorme impacto.

Hematite-118702

Steensen afirmó que los cristales crecen por la acumulación de nuevas capas de partículas diminutas, capas cuya existencia queda probada por la existencia de finas estrías en los cristales. Por lo tanto, los cristales no tenían esa forma desde el comienzo de los tiempos, sino que crecían y que lo seguían haciendo en el presente. Pero la afirmación más importante que hizo Steensen fue, sin duda, la que, publicada en su De solido intra solidum naturaliter contento dissertationis prodromus (1669) decía que, si bien el número y tamaño de los lados pueden variar de un cristal a otro, los ángulos entre los lados correspondientes son siempre los mismos:

In plano axis laterum et numerum et longitudinem varie mutari, non mutatis angulis

Esta fue también la última gran contribución de Steensen a la ciencia. Steensen, nacido luterano, se había convertido al catolicismo en 1667. Después estudió teología y fue ordenado sacerdote en 1675. En 1677 ya era obispo y desde 1680 obispo auxiliar de Münster (norte de Alemania), en plena batalla contrarreformista. Murió en “olor de santidad” en 1686. Fue beatificado en 1988 por Juan Pablo II.

Niels_stensen

Volviendo a la primera ley de la cristalografía, uno esperaría que una afirmación de ese calado y para nada evidente estuviese basada en el estudio sistemático y la medición precisa y meticulosa de una gran cantidad de cristales. Pues no está tan claro. Steensen no menciona para nada que midiese cristal alguno. O bien Steensen tenía algún aparato para medir ángulos y no consideró necesario mencionarlo o simplemente llegó a esta conclusión por pura observación y especulación filosófica.

Quien se tomó el trabajo de realizar una comprobación experimental concienzuda de la ley de constancia de los ángulos fue Jean-Baptiste L.Romé de l’Isle, que recogió sus conclusiones en su obra en tres volúmenes Cristallographie, de 1783, más de cien años después de la publicación de Steensen.

13_Portrait_of_Robert_Hooke

Con todo, cuatro años antes de la publicación del De solido de Steensen ya se había informado de la medición de un ángulo en un cristal. En 1665, en su obra maestra Micrographia, Robert Hooke describía numerosas observaciones realizadas con el microscopio junto con otras tantas bastante más macroscópicas. Entre ellas estaban las figuras de hielo que aparecían en los charcos de orina:

Donde quiera que hubiese un centro, las ramificaciones a partir de él, […], no eran nunca menos, o más, de seis, que habitualmente se unían, o se encontraban la una a la otra muy cerca en el mismo punto o centro; aunque muchas veces no exactamente; y estaban inclinadas a cada una de las otras por un ángulo, de muy cerca de sesenta grados, digo, muy cerca, porque, aunque me apliqué a medirlos lo más precisamente de lo que fui capaz, con los compases más grandes que tenía, no pude encontrar ninguna variación apreciable de esa medida, aunque como la figura parecía componer un ángulo sólido, tenía que ser necesariamente algo menos.

Podríamos pensar que esta observación de que el ángulo era menor de 60º era errónea, pero ello sería injusto con la meticulosidad de Hooke. Efectivamente, Hooke se había dado cuenta de que el centro de las figuras está siempre un poco elevado sobre la superficie (debido a que el hielo se expande al formarse), lo que le llevó a la conclusión de que el ángulo entre las “ramas”, que en una proyección bidimensional sería exactamente 60º, como mostraban sus compases, tenía que ser ligeramente menor.

5d25d1aa95584178c0e898250ff54cf0

Hooke también llegó a la conclusión de que esos cristales que se formaban en los charcos de orina podría ser probablemente agua. Para ello utilizó un método electroquímico de contacto puramente cualitativo: su lengua.

Probando varias piezas claras de este hielo no pude encontrar ningún sabor urinario en ellas, sino que aquellas pocas que probé tenían un sabor tan insípido como el agua.

El método de Hooke para medir ángulos en los cristales usando un compás es aplicable si el cristal que se estudia es plano y, sobre todo, grande. Sin embargo, la mayoría de los cristales son cuerpos tridimensionales y no como los cristales estudiados por Hooke, “por encima de un pie de longitud”. Era pues necesario diseñar un instrumento para medir los ángulos de los cristales. Esta necesidad, a pesar de todo, no se hizo evidente hasta un siglo después.

Este texto es la segunda parte de la serie Notas para una breve historia de la cristalografía.

Referencias generales de la serie:

[1] Wikipedia (enlazada en el texto)

[2] Cristalografía – CSIC

[3] Molčanov K. & Stilinović V. (2013). Chemical Crystallography before X-ray Diffraction., Angewandte Chemie (International ed. in English), PMID:

[4] Lalena J.N. (2006). From quartz to quasicrystals: probing nature’s geometric patterns in crystalline substances, Crystallography Reviews, 12 (2) 125-180. DOI:

[5] Kubbinga H. (2012). Crystallography from Haüy to Laue: controversies on the molecular and atomistic nature of solids, Zeitschrift für Kristallographie, 227 (1) 1-26. DOI:

[6] Schwarzenbach D. (2012). The success story of crystallography, Zeitschrift für Kristallographie, 227 (1) 52-62. DOI:

Esta entrada es una participación de Experientia docet en la Edición Inaugural del Festival de la Cristalografía que organiza Educación química y en la XXIX Edición del Carnaval de Química que acoge Más ciencia, por favor.

480px-Interferometre_Michelson.svg

En los últimos años el número de artículos de investigación publicados que no pueden ser reproducidos ha aumentado. Una de las causas podría encontrarse en que los criterios de significación estadística no son lo suficientemente estrictos. Esto, al menos, es lo que argumenta Valen Johnson, de la Universidad Texas A&M (EE.UU.), en un artículo publicado en PNAS.

La inmensa mayoría de los investigadores usan un número llamado valor p como baremo de la significación estadística. Este número p es una probabilidad, por lo que puede tomar valores entre 0 y 1, siendo 0 probabilidad nula y 1 absoluta certeza. La probabilidad que mide el valor p es la de que yo obtuviese los resultados experimentales que he obtenido si no existiese relación alguna (hipótesis nula) entre las variables que estoy considerando como relacionadas en mi hipótesis experimental. Así, por ejemplo, si yo digo como hipótesis experimental que la humedad ambiente afecta a la producción de aceitunas, la hipótesis nula es que yo obtengo la misma producción de aceitunas cerca de la costa y en el interior; si mis mediciones indican una variabilidad que es compatible con la hipótesis nula, entonces mis resultados no son estadísticamente significativos.

Este valor p se supone que le da al investigador una idea de si sus esfuerzos han dado resultado positivo. Por convención está establecido que un valor de p menor o igual a 0,05, es decir que la probabilidad de que yo obtenga estos resultados y la hipótesis nula sea cierta es inferior al 5%, es lo suficientemente significativo estadísticamente como para afirmar que existe una correlación con la hipótesis objeto de experimentación. Pero, según Johnson, aquí está el quid de la cuestión: p representaría realmente la probabilidad de que se dé un valor extremo en un experimento y, por tanto, el valor p no estaría reflejando realmente el grado de variación con la norma que los investigadores piensan que refleja.

En estadística existen alternativas para calcular la diferencia entre la norma y los resultados obtenidos cuando se causa un cambio en un sistema. Cada vez más usadas son las técnicas bayesianas que, según Johnson, sí ofrecen una comparación genuina. De hecho, Johnson ha desarrollado un algoritmo para convertir el factor de Bayes en valores p. Al hacerlo muestra lo poco fiables que pueden ser los valores p.

Con todo el problema no está en que los investigadores usen los valores p, sino que se fían de valores que no son los suficientemente estrictos. Johnson sugiere que la comunidad investigadora debería cambiar el estándar y comenzar a admitir como significativos, en vez del 0,05, el 0,005 o, incluso, el 0,001. De hacerse, esto reduciría mucho el número de artículos publicados con resultados no reproducibles, con lo que ello implica de ahorro en ensayos de reproducción inútiles y aquilatamiento de reputaciones de autores supuestamente muy productivos.

Referencia:

Johnson V.E. Revised standards for statistical evidence, Proceedings of the National Academy of Sciences, DOI:

Esta anotación es una participación de Experientia docet en la edición 4.12310562 del Carnaval de Matemáticas, que alberga ::ZTFNews

Tribunal de la experiencia

En una anotación anterior, Provisional y perfectible, introdujimos el concepto de hipótesis auxiliar. Recordemos un párrafo relevante:

Estas hipótesis no expresadas explícitamente se suelen llamar hipótesis auxiliares y son cruciales en cualquier caso de razonamiento disconfirmatorio. Tanto es así que, en cualquier situación en la que se usa una teoría para hacer una predicción que resulta ser incorrecta, es posible (de hecho muy probable, como demuestran todos los días los laboratorios de prácticas) que la hipótesis principal esté perfectamente bien y que lo que fallen sean algunas de las hipótesis auxiliares.

Por lo tanto, cuando un resultado experimental arroja un valor que parece contradecir nuestra hipótesis principal lo que termina ocurriendo probablemente es que se rechace alguna de las hipótesis auxiliares.

Dado el papel que juegan las hipótesis auxiliares, cuando realizamos un experimento, supuestamente para probar una hipótesis concreta, no estamos realmente comprobando sólo esa hipótesis individual. Por el contrario, en un sentido que es importante, estoy comprobando la hipótesis principal junto con las hipótesis auxiliares. Es decir, que lo que habitualmente comprobamos es un cuerpo de afirmaciones, cada una de las cuales puede ser rechazada o modificada en función de las pruebas disconfirmatorias.

Y este es uno de los elementos principales de la tesis de Duhem-Quine, a saber, que una hipótesis no puede ser comprobada aisladamente; lo que se comprueba siempre es un grupo completo de hipótesis, en el que cualquiera de ellas es rechazable o modificable si los resultados experimentales no son los que se esperan. A esto es a los que referíamos en la introducción a esta serie cuando hablábamos de que nuestras creencias se enfrentan al “tribunal de la experiencia” (esta expresión es de Quine) no una a una, en solitario, sino como parte de un cuerpo.

Continúa leyendo en el Cuaderno de Cultura Científica

Clatrato extraido del fondo marino frente a las costas de Oregón | Imagen: Wusel007 / Wikimedia Commons
Clatrato extraido del fondo marino frente a las costas de Oregón | Imagen: Wusel007 / Wikimedia Commons

En el fondo del océano, donde las temperaturas son muy frías, las presiones muy altas y la oscuridad prácticamente absoluta, algunos microorganismo sobreviven “comiendo” el metano encerrado en unas estructuras cristalinas de agua, formando una especie de hielo (sólido por tanto), llamadas clatratos. Ahora, un estudio encabezado por Jennifer Glass, del Instituto de Tecnología de Georgia (EE.UU.; aunque cuando realizó el estudio trabajaba en el de California becada por la NASA), pone de manifiesto que dos organismos simbióticos (una bacteria y una arquea) usan enzimas basadas en tungsteno para conseguir metabolizar el metano. Los resultados se publican en Enviromental microbiology.

En los ambientes fríos el molibdeno, un metal más común en su uso metabólico, es el elegido para formar las enzimas necesarias. Sin embargo, la arquea ANME (siglas en inglés de arquea metanotrófica anaeróbica, esto es, la arquea que come metano sin usar oxígeno) y una deltaproteobacteria que usa sulfatos, usan metales mucho menos abundantes, el tungsteno y el cobalto. Las enzimas basadas en tungsteno si se habían detectado antes en las mucho más cálidas fumarolas hidrotermales.

Por qué usan tungsteno y cobalto es una pregunta sin respuesta aún. Posiblemente porque estos metales estén en formas más accesibles en esas condiciones. Esto será algo a estudiar en el futuro.

La enzima clave del proceso se llama formilmetanofurano deshidrogenasa, y participa en el último paso para convertir el metano en dióxido de carbono, siendo clave en el proceso de oxidación del metano (recordemos que la oxidación no implica necesariamente a presencia de oxígeno; un oxidante es cualquier especie química que tome electrones, como suele hacer el oxígeno). Este proceso suministra a estos microorganismos el carbono y la energía necesarios para su metabolismo.

Como nota anecdótica, el dióxido de carbono liberado reacciona con el calcio disuelto en el agua, precipitando carbonato cálcico, con lo que en el entorno de las zonas donde viven estos microorganismos se forman una especie de estalagmitas características.

Los organismos psicrófilos, los que viven a temperaturas muy bajas, necesitan de adaptaciones únicas para sobrevivir en estos ambientes. Démonos cuenta, por ejemplo, que los psicrófilos tienen que encontrar soluciones a la disminución que el frío supone en la fluidez de las membranas o el daño que los cristales de hielo pueden ocasionar en las estructuras celulares. Por ello su estudio es interesante para comprender las posibilidades de la vida en los mundos helados que pueblan el Universo, empezando por Marte.

Referencia:

Glass J.B., Yu H., Steele J.A., Dawson K.S., Sun S., Chourey K., Pan C., Hettich R.L. & Orphan V.J. (2013). Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments, Environmental Microbiology, n/a-n/a. DOI:

Esta entrada es una participación de Experientia docet en la XXIX Edición del Carnaval de la Química que organiza Más ciencia, por favor

logo7

Imagen 1

De pocas ciencias puede afirmarse que tienen un origen anterior incluso a la propia especie humana. Y es que la fascinación que ejercen los cristales llevó a antecesores del Homo sapiens a recogerlos, conservarlos y usarlos como herramientas. Este es el caso de los cristales de cuarzo encontrados entre huesos de Homo erectus pekinensis de entre 250.000 y 700.000 años de antigüedad y herramientas de piedra excavados en la cueva de Zhoukoudian (China). Es llamativo, sin embargo, que algunos de estos cristales no muestran signos de haber sido usados y podrían haber tenido alguna otra función, posiblemente decorativa o ceremonial. Lo mismo ocurre con los seis cristales de cuarzo no utilitarios encontrados en Singi Talav (cerca de Didwana, en el desierto de Thar, Rajastán, India) encontrados en una capa arqueológica ocupada por Homo erectus hace entre 150.000 y 300.000 años.

Imagen 2

Es comprensible que la belleza de algunos especímenes minerales cristalinos atrajesen la atención de nuestros antepasados y, por esta sola razón, fuesen recogidos como objetos preciosos. De aquí a que adquieran valor más allá del utilitario había un paso; hay constancia de uso ornamental por los antiguos sumerios, egipcios, chinos y mayas. El siguiente, paso, el mágico/religioso fue casi contemporáneo y se ve reflejado incluso en los libros sagrados. Efectivamente, sólo el Antiguo Testamento, por ejemplo, recoge 23 minerales de uso ornamental/litúrgico:

Lo guarnecerás de piedras preciosas, dispuestas en cuatro hileras: en la primera habrá un jaspe rojo, un topacio y una esmeralda; en la segunda, un rubí, un zafiro y un diamante; en la tercera, un ágata, una cornalina y una amatista; y en la cuarta, un crisólito, un lapislázuli y un jaspe verde. Todas ellas estarán engarzadas en oro. Éxodo, 28: 17-20 (se repite en Éxodo, 39: 10-13)

Estabas en Edén, el Jardín de Dios, recubierto de piedras preciosas de todas las especies: sardo, malaquita y diamante, crisólito, ónix y jaspe, zafiro, topacio y esmeralda. Llevabas adornos labrados en oro y encajes preparados para ti el día en que fuiste creado. Ezequiel, 28:13

[..] porque Jerusalén será reconstruida, y también su Templo por todos los siglos! ¡Feliz de mí, si queda alguien de mi descendencia para ver tu gloria y celebrar al Rey del cielo! Las puertas de Jerusalén serán hechas de zafiro y esmeralda, y todos sus muros, de piedras preciosas; las torres de Jerusalén serán construidas de oro, y sus baluartes, de oro puro. Las calles de Jerusalén serán pavimentadas de rubíes y de piedras de Ofir; Tobías, 13:17

La palabra cristal viene del griego clásico κρύσταλλος (crústallos), que denominaba tanto a los témpanos de hielo como al cristal de roca (cuarzo) y, por extensión a cualquier sólido transparente, y ésta de κρύος (crúos), escarcha. Los griegos creían que el cristal de roca era hielo muy congelado, algo que debería parecerle absurdo a cualquiera que lo tocase y se diese cuenta de que no estaba frío. Pero el conocimiento antiguo era poco experimental y esta creencia se mantuvo durante toda la Edad Antigua, la Edad Media y el Renacimiento. La prueba que se daba era que se decía que existían pequeñas gotitas de agua dentro de los trozos de cristal de roca. Esta invención era un lugar tan común, que hasta los poetas como Claudius Claudianus le dedicaban sentidos epigramas.

Imagen 4

Otro ejemplo de las consecuencias de la repetición y comentario de textos anteriores y la falta de interés por el experimento entre filósofos y escolásticos es que Caius Plinius Secundus (conocido como Plinio el Viejo), del que hablaremos algo más en un momento, afirmaba que existían montañas de imanes en las que una persona que llevase botas con clavos de hierro se quedaba atascada y, también otras, de imanes invertidos que repelían el hierro y donde una persona con esas botas no podía pisar. Además menciona que un imán pierde sus propiedades si se le frota con ajo. Este “hecho” se creyó a pies juntillas hasta finales del siglo XVI, más de 1.500 años después de Plinio, cuando a William Gilbert se le ocurrió hacer el experimento e informar de ello en De magnete, magneticisque corporibus, et de magno magnete tellure (Sobre los imanes, los cuerpos magnéticos y el gran imán terrestre) en 1600.

No es de extrañar, pues, que los conceptos de cristal y mineral fuesen bastante vagos antes de 1.500 y que las fuentes que los mencionan sean muy escasas. Notaremos algunas de las importantes.

En la obra maestra de Titus Lucrecius Carus, De rerum natura (publicada en el siglo I a.e.c.), presenta los principios del atomismo yaparecen listados algunos sólidos ordenados según su dureza: diamante, cuarzo (corindón), hierro, bronce y, lo que es más interesante, liga sus propiedades a su composición atómica.

Lucrecio también propuso, en el libro II de De rerum natura aunque fuese muy esquemáticamente, un mecanismo para el crecimiento de los cristales, aunque no los mencionase explícitamente: los cuerpos crecen cuando muchos átomos se adhieren a ellos y se reducen cuando los átomos se separan de ellos.

Cuál es el movimiento con que engendran y a los cuerpos destruyen los principios de la materia, y cuál es el impulso y cuál la rapidez que hace que vuelen por el espacio inmenso sin descanso. Porque seguramente la materia no es una masa inmóvil, pues que vemos disminuirse un cuerpo, y de continuo manando, se consumen a la larga y el tiempo nos los roba de la vista; se conserva sin pérdidas la suma: empobreciendo un cuerpo, los principios van a enriquecer otro, y envejecen los unos para que otros reflorezcan; ni en un sitio se paran; de este modo el universo se renueva siempre […] Traducción de José Marchena

Plinio, a pesar de lo que decíamos más arriba, ofreció algunos atisbos de proto-cristalografía y proto-mineralogía en su obra más importante Naturalis historia (publicada poco antes del año 77 e.c.). Plinio aparece fascinado por las caras perfectamente planas y lisas del cuarzo y describe cuatro piedras preciosas cuyos cristales se encuentran habitualmente en la naturaleza: el cuarzo (crystallus), la piedra-arcoiris (iris, lo más seguro cuarzo con impurezas), el diamante (adamas) y el berilo (smaragdus, del griego σμάραγδος , “gema verde”; la esmeralda, un berilo verde, deriva su nombre de aquí). Los cristales se describen como “hexagonales” (sexangula figura) y “hexaédricos” (sexangulus laterbius) pero no existe nombre ni concepto de cristal.

Imagen 3

Otra referencia interesante de Plinio está en la descripción de las ventanas e invernaderos de las casas ricas de Roma, cubiertas por cristales de lapis specularis, una forma deshidratada del sulfato de calcio (yeso), debido a su transparencia (estrictamente hablando es translúcido), tamaño (hasta un metro) y planaridad.

Imagen 5

La información mineralógica contenida en la Naturalis historia de Plinio fue preservada y mejorada algo en libro XVI “de piedras y metales” de las Etimologiae (publicadas alrededor de 630) de Isidoro de Sevilla. Y también se encuentra recogida en el Lapidario (publicado alrededor de 1250), tratado fundamentalmente astrológico mandado escribir por Alfonso X de Castilla. Y poco más hasta mediados del siglo XVI.

Imagen 6

Efectivamente, las mayores contribuciones a la cristalografía desde Plinio aparecen casi simultáneamente en términos históricos: nos referimos a la De la pirotechnia de Vannoccio Biringuccio de 1540 y a De re metallica de Georg Pawer (más conocido por su nombre latinizado Georgius Agricola), publicada en 1556.

Biringuccio aporta descripciones precisas de muchos cristales en De la pirotechnia, además de constatar la habitual fascinación con su perfección. Así los cristales de alumbre son “gruesos cuadrados con bellas esquinas que parecen grandes diamantes”, y los de pirita son “pequeños cubos […] tan bien cuadrados que ningún dibujante podría dibujar sus esquinas con mayor precisión o mejor con cualquier tipo de instrumento”. También da detalles de cómo la cristalización puede usarse para la purificación de menas minerales, como el vitriolo verde (FeSO4·nH2O) y el alumbre.

Sin embargo, incluso este inteligente observador de la naturaleza y amante de la tecnología, que critica a los “alquimistas” y otros “filósofos” que escriben a partir de libros en vez de la experiencia, no puede sustraerse a la tentación al hablar de las piedras preciosas, a las que atribuye propiedades fantásticas. Entre estas propiedades está que el rubí neutraliza los venenos y purifica “el aire corrompido por un vapor pestilente”, que los diamantes se vuelven quebradizos si se manchan con sangre de cabrito o que las esmeraldas se encuentran en los nidos de los grifos y previenen la epilepsia, pero que “se rompen en muchos lugares si se lleva durante el coito”.

De forma análoga, Agricola, cuyo texto, por lo demás muy cuidadoso en las cuestiones técnicas, e influyente hasta bien entrado el siglo XVII, mantiene muchas de las viejas creencias heredadas, como la capacidad del ajo de desmagnetizar la magnetita.

Imagen 7

Aunque pueda extrañar a alguno, está breve exposición de la cristalografía como protociencia no quedaría completa si no mencionásemos al que es considerado, por lo demás, un científico de pleno derecho, uno de los padres de la biología, Carl Nilsson Linnæus. Al leer lo que sigue consideremos que Linneo fue contemporáneo (finales del XVIII), nada menos, que de Jean-Baptiste Romé de l’Isle, uno de los padres de la cristalografía moderna.

Linneo, al igual que hizo con las plantas y los animales, dividió los minerales en su obra maestra, Systema naturae, en clases, órdenes, familias y géneros, y a cada mineral le dio dos nombres, análogamente a lo que hoy llamamos comúnmente nombre científico (taxones) de plantas y animales. En este sistema existían tres clases de minerales: Petrae (rocas), Minerae (menas) y Fossilia (excavados). La mayoría de los materiales macrocristalinos los clasificó como Minerae, y éstos los dividió en Salia (sales, la mayoría de cristales transparentes), Sulphura (azufres, incluyendo el ámbar, los aceites y los sulfuros) y Mercuralia (mercúricos, los metales). La clasificación de Linneo no tenía en cuenta ni la composición química ni las reglas cristalográficas ya conocidas en la época. Además Linneo aún reflejaba en su obra la idea de John Duns Scotus de que los cristales están vivos ya que, al igual que las plantas, crecen a partir de una semilla, y mueren cuando se disuelven o funden.

De hecho, Systema naturae podría considerarse una pura curiosidad histórica protocristalográfica más, si no fuese por un hecho fortuito. Fue el libro que despertó el interés por la mineralogía en René Just Haüy; y de los resultados de ese interés hablaremos extensamente en su momento.

Este texto es la primera parte de la serie Notas para una breve historia de la cristalografía.

Referencias generales de la serie:

[1] Wikipedia (enlazada en el texto)

[2] Cristalografía – CSIC

[3] Molčanov K. & Stilinović V. (2013). Chemical Crystallography before X-ray Diffraction., Angewandte Chemie (International ed. in English), PMID:

[4] Lalena J.N. (2006). From quartz to quasicrystals: probing nature’s geometric patterns in crystalline substances, Crystallography Reviews, 12 (2) 125-180. DOI:

[5] Kubbinga H. (2012). Crystallography from Haüy to Laue: controversies on the molecular and atomistic nature of solids, Zeitschrift für Kristallographie, 227 (1) 1-26. DOI:

[6] Schwarzenbach D. (2012). The success story of crystallography, Zeitschrift für Kristallographie, 227 (1) 52-62. DOI:

Esta entrada es una participación de Experientia docet en la Edición Inaugural del Festival de la Cristalografía que organiza Educación química y en la XXIX Edición del Carnaval de Química que acoge Más ciencia, por favor.

En una anotación anterior presentábamos el modelo imponderable, el primer modelo estándar de la física. Hoy vamos a ver cómo evolucionó a lo largo del siglo XIX y cómo el afán por completarlo llevó a una física más allá del modelo estándar.

Charles Augustin de Coulomb
Charles Augustin de Coulomb

El modelo imponderable, que se había ganado su lugar como el estándar alrededor de 1800, tenía dos virtudes principales. Por una parte explicaba inmediatamente la existencia de los fenómenos por la mera presencia del agente correspondiente y, por otro encajaba con la moda científica de la época: la cuantificación.

En 1785, Charles Augustin Coulomb estableció, para satisfacción de los miembros de la Académie des Sciences de París, que las fuerzas entre los fluidos en la electricidad y en el magnetismo disminuían, como lo hacía la fuerza de la gravedad, con el cuadrado de la distancia entre los elementos que interactuaban.

Pierre Simon de Laplace y su escuela mantuvieron durante mucho tiempo la ambición de cuantificar las fuerzas a distancia que se suponía que actuaban entre los elementos del fluido de calor (que ellos llamaban calórico) y entre las partículas de luz y la materia. Hoy puede parecernos absurdo por irreal pero Laplace y Jean Baptiste Biot se las arreglaron para, a partir de estas premisas, y en el marco del modelo imponderable, explicar con detalle la refracción, tanto simple como doble, la polarización y otros fenómenos ópticos.

Tomando literalmente el concepto de calor como fluido conservado, Laplace creó una magnífica teoría de los procesos adiabáticos que resolvía el viejo problema de la escandalosa discrepancia entre los tratamientos teóricos y los resultados experimentales de las mediciones de la velocidad del sonido en el aire. Si bien no hacía uso de fuerzas a distancia, esta teoría adiabática asumía (y potenciaba la creencia en) la existencia del calórico.

Continúa leyendo en el Cuaderno de Cultura Científica