In vino veritas

Según la mitología griega fue el mismísimo dios Dionisios el que descendió del Monte Olimpo para enseñar a los hombres a fabricar vino. Según la arqueología moderna ese descenso, de haber existido, habría tenido lugar en Asia Menor (en lo que hoy es el este de Turquía) hace unos 7.000 años. Junto con el arte del vino, Dioniso donó otro regalo que pasó mucho tiempo sin ser reconocido como tal, el tártaro, que se encuentra en el fondo de, entonces, las ánforas y, hoy, las barricas de vino.

Tanto Lucrecio como Plinio el viejo estaban familiarizados con el tártaro. Lo que hoy sabemos que es tartrato ácido de potasio (formalmente hidrógeno tartrato de potasio) era descrito como de sabor agrio y que ardía con una llama de color púrpura, además de proporcionar recetas para una docena de remedios que lo contenían.

Se estudió con más detalle en la Edad Media. El alquimista persa Abū Mūsa Ŷābir ibn Hayyan al-Āzdī (conocido en Europa como Geber) fue el primero en dejar constancia por escrito, alrededor del año 800, de que el tártaro es una sal y aisló el ácido tartárico (y otra buena cantidad de compuestos orgánicos, pero esa es otra historia) aunque no con demasiada pureza. Hubo que esperar a 1769 para obtener el ácido tartárico químicamente puro, cosa que logró Carl Wilhelm Scheele (a la par que otra buena cantidad de compuestos orgánicos). El compuesto se empleaba en la fabricación de cosméticos y remedios medicinales, como la sal de la Rochelle o el tártaro emético, por lo que muchas bodegas se convirtieron de facto en fábricas de ácido tartárico.

Tártaro en un corcho

Alrededor de 1818, Paul Kestner, un productor de tártaro de Thann (Francia) se dio cuenta de que, además de ácido tartárico se producía en sus barriles una pequeña cantidad de cristales de lo que parecía otra sustancia. Al principio pensó que podría ser ácido oxálico; sin embargo, al poco tiempo se dio cuenta de que era algo nuevo y empezó a producirlo en cantidades mayores a base de hervir disoluciones saturadas de ácido tartárico. En 1826, convencido completamente de que era algo desconocido para la ciencia, se decidió a llevar una muestra a Gay-Lussac, quien, después de repetidos experimentos, llegó a la conclusión de que su fórmula era C4H6O6, la misma del ácido tartárico. Llamó a este nuevo compuesto ácido racémico (del latín racemus, esto es, racimo de uvas).

Las diferencias químicas entre los ácidos tartárico y racémico (y entre sus sales , tartratos y racematos) eran pequeñas, pero suficientes como para tener intrigados a los químicos. Este fue uno de los casos de isomería conocidos en la época; además muchas de las sales de los dos ácidos eran isomorfas.

Vieja bodega

Un aspecto importante en lo trascendencia que llegaron a tener estos ácidos en el desarrollo de la ciencia fue su bajo coste y la facilidad de obtención en una época, principios del XIX, en la que la industria química estaba en su infancia y los productos químicamente puros eran una rareza. Además racematos y tartratos eran muy fáciles de preparar y conseguir cristales de tamaño apreciable no era nada complicado. Por lo tanto, era el sistema perfecto en el que estudiar dos conceptos nuevos pero que no se terminaban de entender, y que había indicios de que podían estar relacionados: isomería e isomorfismo.

En los años posteriores a 1830 Biot midió la actividad óptica del ácido tartárico y sus sales (dextrógiros todos ellos); el racémico y las suyas eran ópticamente inactivas. Berzelius, empeñado en encontrar una explicación al fenómeno, instó a Mitscherlich, ya una autoridad en la química cristalina, a que estudiase la simetría de tartratos y racematos.

Mitscherlich confirmó los hallazgos de Biot, el tartárico y sus sales eran todos dextrógiros y sus cristales hemiédricos; el racémico y las suyas inactivos ópticamente y sus cristales holoédricos. Había dos sales que no cumplían estas reglas generales: el tartrato de sodio y amonio y el racemato de sodio y amonio que formaban cristales idénticos pero de actividad óptica de signo opuesto. Mitscherlich estaba tan confundido por este hecho al que no era capaz de encontrar una explicación que no publicó sus resultados en más de una década. Sólo lo haría en 1844, después de que en 1841 Frédéric Hervé de la Provostaye publicase un estudio similar.

El misterio sería resuelto en 1848 por un joven y desconocido profesor de Dijon, recién doctorado, Louis Pasteur.

Este texto es la duodécima parte de la serie Notas para una breve historia de la cristalografía.

Referencias generales de la serie:

[1] Wikipedia (enlazada en el texto)

[2] Cristalografía – CSIC

[3] Molčanov K. & Stilinović V. (2013). Chemical Crystallography before X-ray Diffraction., Angewandte Chemie (International ed. in English), PMID:

[4] Lalena J.N. (2006). From quartz to quasicrystals: probing nature’s geometric patterns in crystalline substances, Crystallography Reviews, 12 (2) 125-180. DOI:

[5] Kubbinga H. (2012). Crystallography from Haüy to Laue: controversies on the molecular and atomistic nature of solids, Zeitschrift für Kristallographie, 227 (1) 1-26. DOI:

[6] Schwarzenbach D. (2012). The success story of crystallography, Zeitschrift für Kristallographie, 227 (1) 52-62. DOI:

Esta entrada es una participación de Experientia docet en el II Festival de la Cristalografía que organiza Experientia docet y en la XXXI Edición del Carnaval de Química que acoge ::ZTFNews.

Homenaje a La Pesadilla de Henry Fuseli

Hijo de Nix, diosa de la noche, y gemelo de Tánatos, la personificación de la muerte, Hipnos, el sueño, habita una cueva del inframundo de la mitología griega. Por su parte las oraciones matutinas judías y cristianas alabarán a Dios por devolver el alma del durmiente al despertar. Con todo, el pensamiento naturalista primitivo entendía elsueño como un estado pasivo creado por el aislamiento del encéfalo de las demás partes del cuerpo y del entorno.

Sigue leyendo en el Cuaderno de Cultura Científica

Palacio de Luxemburgo

A última hora de una tarde de 1808 un veterano de la Expedición a Egipto se entretenía paseando por los jardines de Luxemburgo, que desde 1791 eran, como el palacio del mismo nombre, “propiedad nacional”. Llevaba en el bolsillo un cristal de espato de Islandia con el que se entretenía de vez en cuando observando objetos a su través. En un momento dado, ocurrió algo curioso: mientras observaba la luz reflejada en los cristales del palacio se dio cuenta de que, en vez de ver dos imágenes igualmente brillantes, aparecía una mucho más brillante que la otra. Como después diría Pasteur, la suerte favorece a la mente preparada; Étienne-Louis Malus dedujo que el efecto tenía que estar relacionado con el hecho de que la luz fuese reflejada. La luz, concluyó, se polarizaba al reflejarse.

Malus

Malus publicó su descubrimiento en 1809. En 1810 publicaría la teoría de la doble refracción de la luz en los cristales e ingresaría en la Académie des Sciences de París. Poco después inventaría los primeros filtros polarizadores y polariscopios. Ambos se basaban en la reflexión de un haz de luz no polarizada en un ángulo determinado, hoy llamado ángulo de Brewster.

Hacer experimentos con luz polarizada se convirtió en la moda científica del momento y, como era de esperar, empezaron a hacerse nuevos descubrimientos muy pronto. Así, por ejemplo, los de un jovencísimo astrónomo del Observatorio de París y miembro de la Academia y del consejo de la École Polytechnique desde los 23 años, François-Jean-Dominique Arago (científico y hombre excepcional con amplios intereses políticos, llegó a ser de facto, durante mes y medio, jefe del estado francés). Arago fue el primero en observar el cambio de color cuando un haz de luz polarizada pasaba a través de un cristal de cuarzo (1811).

Biot

Compañero de aventuras y correrías del joven Arago, Jean-Baptiste Biot observó la rotación óptica (hoy diríamos actividad óptica) de los cristales de cuarzo (1812) y de algunas sustancias orgánicas: el aceite de trementina, los extractos cítricos, el extracto de laurel, las disoluciones de alcanfor, el azúcar (1815). Biot observó además que los compuestos orgánicos retenían su actividad óptica independientemente de su estado de agregación, esto es, el azúcar es dextrorrotatoria (gira el plano de polarización a la derecha desde el punto de vista del observador) tanto esté en forma cristalina como en disolución. El cuarzo fundido, sin embargo, es ópticamente inactivo. Biot llegó a la conclusión de que la rotación óptica de los compuestos orgánicos es una propiedad molecular, mientras que la rotación óptica del cuarzo es una propiedad del cristal, el resultado de cómo se empaquetan las “moléculas”.

Pero Biot fue más allá. Afirmó que la causa de la actividad óptica era la asimetría . Por tanto, las moléculas orgánicas serían asimétricas, mientras que los cristales de cuarzo serían ordenamientos asimétricos de moléculas simétricas. En lenguaje actual las moléculas asimétricas en el sentido de Biot se denominan quirales, y las simétricas, aquirales. Por otra parte hoy sabemos que no existen moléculas de cuarzo (SiO2) ni en los cristales ni en el fundido, por lo que algo que no existe no puede ser quiral.

Caras hemiédricas

Pocos años más tarde John William Herschel describió la existencia de caras hemiédricas en los cristales de cuarzo, es decir, cristales en los que sólo aparecen la mitad de las caras para la máxima simetría (holoedría) que permite el sistema cristalino. Herschel descubrió que existen dos tipos de cristales hemiédricos, los que sólo tienen caras hemiédricas zurdas y los que sólo tienen caras hemiédricas diestras, y que son imagen especulares unos de otros (en la imagen cristales hemiédricos de tartrato de sodio y amonio).

Herschel dio también el siguiente paso al correlacionar la rotación óptica con la hemiedría: los cristales zurdos eran levorrotatorios (giraban el plano de la luz polarizada a la izquierda) y los diestros, dextrógiros. Esto supuso la primera confirmación independiente de la relación estructura-actividad propuesta por Biot.

prisma de Nicol

En 1828 William Nicol inventaba el prisma de su nombre, un dispositivo que consistía en un monocristal de espato de Islandia cortado diagonalmente y vuelto a unir con una capa intermedia de bálsamo del Canadá, un adhesivo transparente, que hacía uso de sus propiedades birrefringentes. El prisma de Nicol es un polarizador compacto y robusto que, desde 1830, contribuyó sobremanera al uso rutinario de la polarimetría en la investigación óptica y cristalográfica.

Podríamos incluso afirmar que el prisma de Nicol simboliza el nacimiento de una nueva rama del conocimiento, la óptica cristalina, cuyos pioneros fueron Arago, Biot y David Brewster en la primera mitad del siglo XIX. La observación de cristales con luz polarizada ofreció el primer vistazo a la estructura interna de los cristales, y fue el único método capaz de hacer esto hasta la aparición de la difracción de rayos X, ya comenzado el siglo XX.

Este texto es la undécima parte de la serie Notas para una breve historia de la cristalografía.

Referencias generales de la serie:

[1] Wikipedia (enlazada en el texto)

[2] Cristalografía – CSIC

[3] Molčanov K. & Stilinović V. (2013). Chemical Crystallography before X-ray Diffraction., Angewandte Chemie (International ed. in English), PMID:

[4] Lalena J.N. (2006). From quartz to quasicrystals: probing nature’s geometric patterns in crystalline substances, Crystallography Reviews, 12 (2) 125-180. DOI:

[5] Kubbinga H. (2012). Crystallography from Haüy to Laue: controversies on the molecular and atomistic nature of solids, Zeitschrift für Kristallographie, 227 (1) 1-26. DOI:

[6] Schwarzenbach D. (2012). The success story of crystallography, Zeitschrift für Kristallographie, 227 (1) 52-62. DOI:

Esta entrada es una participación de Experientia docet en el II Festival de la Cristalografía que organiza Experientia docet y en la XXXI Edición del Carnaval de Química que acoge ::ZTFNews.

Foto 51 de Gosling-Franklin

Doble hélice es el nombre que se asocia con la estructura molecular del ácido desoxirribonucleico (ADN). Si bien el ADN ya había sido aislado en el siglo XIX e identificado químicamente en 1909, su estructura no fue definida hasta 1953 cuando Francis Crick y James Watson publicaron su modelo.

Sigue leyendo en el Cuaderno de Cultura Científica

Vikingos

Los vikingos fueron, probablemente, los mejores marinos de la Edad Media. Sus barcos surcaron las aguas no sólo del Mar del Norte o del Atlántico Norte sino también del Mediterráneo y el Mar Negro. Los siglos IX y X fueron los siglos vikingos por excelencia: llegaron a tomar Sevilla, Santiago de Compostela o Pamplona, por poner ejemplos de ciudades conocidas. Pero sus correrías por las costas de lo que hoy es Península Escandinava, Reino Unido, Países Bajos, Bélgica, Francia, Península Ibérica, Italia, Península Balcánica, Bulgaria, Rumanía, Ucrania o Rusia no ilustran convenientemente su capacidad marinera.

Expansión vikinga

Los vikingos fueron capaces en el siglo IX de hacer lo que nadie más se atrevía: adentrarse en el misterioso océano Atlántico. De esta manera descubrieron Islandia y se asentaron allí. El siglo siguiente Erik Thorvaldsson (Erik el Rojo) dirigió un grupo de islandeses en el asentamiento en Groenlandia y, un par de décadas más tarde, su hijo Leif Eriksson, se dirigió aún más al oeste llegando finalmente a lo que serían las costas de América del Norte alrededor del año 1000, esto es, 500 años antes que Colón. Los territorios que los vikingos llamaron Helluland, Markland y Vinland corresponderían posiblemente a lo que hoy conocemos como la Isla de Baffin, la Península de Labrador y el Golfo de San Lorenzo.

En la época de los vikingos no se conocía la brújula en esta parte del mundo (se empezó a usar en China a comienzos del siglo XII y en Europa a finales de ese siglo) y la navegación se basaba en la observación del Sol, la Luna y las estrellas. Por lo tanto era necesario un tiempo despejado al menos en algún momento del día para una determinación fiable de la posición del barco (al menos de la latitud; la longitud es algo mucho más complejo). Pero si uno navega por el Atlántico Norte con lo que menos puede contar es con cielos despejados. Entonces, ¿cómo se las ingeniaron los vikingos para orientarse y ser capaces de llegar a sus destinos y regresar a casa?

A partir de las sagas nórdicas sabemos que los vikingos usaban una sólarstein (piedra solar mágica), que era capaz de mostrarles la posición del Sol incluso en las peores condiciones meteorológicas, lo que les permitía la navegación de largas distancias. A finales del siglo XI el poder vikingo, y sus incursiones marineras, comenzó a desvanecerse y tras la popularización de la brújula alrededor del año 1300 la piedra mágica fue olvidada y su magia olvidada.

Espato de Islandia

La sólarstein era espato de Islandia, un cristal de carbonato cálcico transparente y romboédrico, y su magia un fenómeno al que hoy llamamos birrefringencia. Cuando se sostiene en una orientación apropiada un cristal birrefringente tiene la capacidad de localizar la fuente de luz (en este caso el Sol) incluso con cielos cubiertos o niebla espesa. Cómo exactamente se hacía esto no ha estado muy claro hasta el trabajo de Ropars et al. (2011).

El estudio científico de la magia del espato de Islandia comenzó siglos después de que fuese olvidada por los marinos del Norte. Curiosamente fue un descendiente de vikingos el primero en describir el fenómeno. El médico danés Rasmus Bartholin se sorprendió al darse cuenta de que cuando miraba a través de un cristal de espato de Islandia se ve una imagen doble. Publicó sus hallazgos en un libro, Experimenta crystalli islandici disdiaclastici quibus mira et insolita refractio detegitur (1669), en el que intentó sin mucho éxito explicar el fenómeno, que describía con extremo detalle, usando la teoría óptica de Descartes.

No sería hasta 1801, en el que la naturaleza ondulatoria de la luz fue confirmada por el experimento de la doble rendija de Thomas Young, que se estuvo en disposición de dar una explicación del fenómeno. Esa explicación la daría en una conferencia el 24 de noviembre de 1803 en la Royal Society de Londres, que se publicaría al año siguiente en como Experiments and Calculations Relative to Physical Optics. La birrefringencia se debía a que el espato de Islandia dividía la luz incidente en dos planos de haces polarizados.

La magia de la sólarstein de los vikingos aún permitiría explorar otros mundos: los de la estructura interna de los cristales.

Este texto es la décima parte de la serie Notas para una breve historia de la cristalografía.

Referencias generales de la serie:

[1] Wikipedia (enlazada en el texto)

[2] Cristalografía – CSIC

[3] Molčanov K. & Stilinović V. (2013). Chemical Crystallography before X-ray Diffraction., Angewandte Chemie (International ed. in English), PMID:

[4] Lalena J.N. (2006). From quartz to quasicrystals: probing nature’s geometric patterns in crystalline substances, Crystallography Reviews, 12 (2) 125-180. DOI:

[5] Kubbinga H. (2012). Crystallography from Haüy to Laue: controversies on the molecular and atomistic nature of solids, Zeitschrift für Kristallographie, 227 (1) 1-26. DOI:

[6] Schwarzenbach D. (2012). The success story of crystallography, Zeitschrift für Kristallographie, 227 (1) 52-62. DOI:

Esta entrada es una participación de Experientia docet en el II Festival de la Cristalografía que organiza Experientia docet

Tormentas en Neptuno

El amoniaco a presión atmosférica es un gas a cualquier temperatura por encima de los -33ºC. Se ha detectado en el espacio interestelar y como componente de los llamados planetas gaseosos, como Júpiter, Neptuno o Urano. Un artículo publicado en 2012 [1] por un equipo de investigadores encabezado por Sandra Ninet, de la Universidad Pierre y Marie Curie (Francia), afirmaba que a altas presiones y temperaturas, como en el interior de estos planetas, el amoniaco se vuelve ¡superiónico!, formando un “hielo caliente”, a la vez sólido cristalino y líquido. Ahora estos mismos investigadores han comprobado que a temperaturas bajas y altas presiones el amoniaco presenta no una, sino dos estructuras cristalinas diferentes. Los resultados aparecen en un artículo subido a arXiv [2].

Diagrama de fases amoniaco alta presión

Si bajamos la temperatura por debajo del punto de fusión del amoniaco (-77ºC) a presión atmosférica éste forma un cristal molecular típico, cúbico primitivo, con débiles enlaces de hidrógeno, al estilo del hielo de agua. Pero en cuanto intervienen presiones muy altas el comportamiento empieza a ser anómalo hasta la paradoja. Ninet et al. demostraron que por encima de 750K y más de 60GPa (véase el diagrama de fases) aparece una fase superiónica compuesta por NH3, NH4+ y NH2 que se comporta simultáneamente como cristal sólido y líquido.

En 2008 unas simulaciones teóricas indicaron que a bajas temperaturas y altas presiones el amoniaco podría existir en una fase que contuviese capas alternas de iones NH4+ y NH2. El equipo de Ninet ha encontrado ahora pruebas de que esto es casi así. Para ello emplearon un yunque de diamante para llevar el amoniaco, a temperatura ambiente, hasta los 194 Gpa, un millón y medio de veces la presión atmosférica.

Estructuras cristalinas del amoniaco

Por encima de 150GPa se observan cambios drásticos en los espectros Raman e infrarrojo, indiciarios de presencia de NH4+ , lo que apuntaría a que hay un cambio de fase. Sin embargo los espectros concuerdan sólo parcialmente con las predicciones teóricas, ya que no cuadran las estructuras cristalinas. Cálculos posteriores, que incluían los nuevos resultados experimentales, y la difracción de rayos X han permitido llegar a la conclusión de que existen dos formas cristalinas, una pseudo hexagonal compacta (ABA, en la imagen) y una cúbica centrada en las caras (ABC).

Estos resultados ponen de manifiesto los comportamientos tan diferentes que pueden llegar a tener en condiciones extremas moléculas, como el amoniaco y el agua, que podríamos pensar que deberían parecerse mucho más. Por otra parte son muy interesantes para comprender mejor la dinámica interna de los planetas gaseosos. En este sentido será interesante extender estos estudios a las mezclas amoniaco/agua y amoniaco/metano.

Referencias:

[1] Ninet S., Datchi F. & Saitta A.M. (2012). Proton Disorder and Superionicity in Hot Dense Ammonia Ice, Physical Review Letters, 108 (16) DOI:

[2] S. Ninet, F. Datchi, P. Dumas, M. Mezouar, G. Garbarino, A. Mafety, C. J. Pickard, R. J. Needs & A. M. Saitta (2014). Ionic ammonia ice, arXiv:

Esta entrada es una participación de Experientia docet en el II Festival de la Cristalografía que organiza Experientia docet, en la XXXI Edición del Carnaval de Química que acoge ::ZTFNews y en La XLVIII Edición del Carnaval de la Física que alberga La Aventura de la Ciencia

Como parte de la serie #De, hoy Del vacío:

Bomba de aire de Boyle

La naturaleza aborrece el vacío. François Rabelais condensó en esta frase de La vie de Gargantua et de Pantagruel (1532-1564) el convencimiento de la imposibilidad de la existencia del vacío que, siguiendo a Aristóteles, permeó todo el pensamiento hasta el siglo XVII. Aristóteles argumentó con cierta extensión en el libro IV de su Física en contra de los antiguos atomistas que insistían en que los átomos se mueven en un vacío infinito.

Continúa leyendo en el Cuaderno de Cultura Científica

PREMIO_ED-1 Con objeto de dar un reconocimiento público a aquellas entradas de blog que, a juicio de Experientia docet, combinan de forma excelente rigor científico, amenidad y animan al lector a querer saber más, hemos decidido crear el “Premio ED a la excelencia en la divulgación científica”. Estos premios también pretenden ser un servicio a nuestros lectores, al poner de relieve entradas de gran calidad que pueden ser de su interés. El premio se rige por las siguientes BASES:
1. El “Premio ED” se concederá a cualquier entrada de blog que, a juicio de Experientia docet, reúna de forma sobresaliente estas características: – trate de cualquier aspecto de la ciencia – combinando rigor con amenidad – incitando al lector a querer descubrir más por sí mismo – sin emplear un exceso de jerga especializada. 2. El “Premio ED” no tiene periodicidad. Se otorga a cualquier entrada que se juzgue merecedora del mismo, publicada a partir del 1 de octubre de 2010. 3. El logotipo del “Premio ED” podrá ser empleado por el autor en la entrada ganadora, o en una barra lateral del blog, en este último caso siempre y cuando haga mención expresa de la entrada premiada. 4. El listado que aparece más abajo es la única relación oficial de los “Premios ED“. 5. Se establece un “Premio ED de Honor” para la iniciativa o blog en su conjunto que, a juicio de Experientia docet, así lo amerite. La concesión de los “Premios ED de Honor” irá acompañada de la publicación de los fundamentos de la misma. 6. Los lectores pueden proponer entradas, iniciativas o blogs mediante correo electrónico, Twitter o Facebook . La decisión de la concesión del premio corresponde, sin embargo, exclusivamente a Experientia docet . Su decisión es final.

Relación de Premios ED de Honor:

1. Fogonazos (acta de concesión)

Relación de entradas premiadas: 1. Entrada: El día que descubrimos Gliese 581 g Blog: Eureka Fecha de publicación: 05/10/10 Autor: Daniel Marín 2. Entrada: La naturaleza de Madagascar contada para europeos (5/6): la pluvisilva montana. Blog: Diario de un copépodo Fecha de publicación: 04/11/10 Autor: Rafael Medina 3. Entrada: Desde el Sol hasta los ojos Blog: La pizarra de Yuri Fecha de publicación: 14/10/2010 Autor: Yuri 4. Entrada: Envejeciendo desde el útero Blog: Fuente de la Eterna Juventud Fecha de publicación: 14/10/10 Autor: Manuel Collado 5. Entrada: 50 soluciones a la paradoja de Fermi (17ª solución): Están transmitiendo pero no sabemos en qué frecuencia tenemos que escucharles. Blog: Física en la Ciencia Ficción [desaparecido] Fecha de publicación: 11/11/10 Autor: Sergio L. Palacios 6. Entrada: El modus operandi del cáncer Blog: MedTempus Fecha de publicación: 08/11/10 Autora: Esther Samper 7. Entrada: ¡Oh, no! ¡Este experimento parece violar la entropía del Universo! Blog: Amazings.es Fecha de publicación: 16/11/10 Autor: Migui 8. Entrada: Alienígenas matemáticos – La adquisición del Banco Estelar de Deneb Blog: El Tamiz Fecha de publicación: 17/11/10 Autor: Pedro Gómez-Esteban 9. Entrada: De vikingos, genética y amerindios en Islandia Blog: La Ciencia y sus Demonios Fecha de publicación: 21/11/2010 Autor: El rano verde 10. Entrada: Por qué no vemos viajeros del tiempo: 10 razones como 10 soles. Blog: Física en la Ciencia Ficción [desaparecido] Fecha de publicación: 16/12/2010 Autor: Sergio L. palacios 11. Entrada: La influencia de la mitología griega en la ciencia (5ª parte): Ares (premio a la serie) Blog: Ese punto azul pálido Fecha de publicación: 29/12/2010 Autor: Daniel Torregrosa 12. Entrada: La nave secreta de la Unión Soviética (en Ciudad Futura, en Eureka) Blogs: Ciudad Futura / Eureka (publicación conjunta) Fecha de publicación: 11/01/2011 Autores: Dani Marín / Paco Arnau 13. Entrada: El largo, largo camino de los Apalaches Blogs: Diario de un copépodo Fecha de publicación: 15/02/2011 Autor: Rafael Medina 14. Entrada: Infinito (I y II) Blog: El Tamiz Fecha de publicación: 29/06/2011 Autor: Pedro Gómez-Esteban 15. Entrada: La noche que Gollum atrapó al más capullo de los antioxidantes Blog: Scientia Fecha de publicación: 10/10/2011 Autor: José Manuel López Nicolás 16. Entrada: Curiosity, corazón de plutonio Blog: brucknerite Fecha de publicación: 29/08/2012 Autor: Iván Rivera 17. Entrada: La historia de las Voyager, los mensajeros interestelares de la humanidad Blog: Eureka Fecha de publicación: 16/09/2012 Autor: Daniel Marín 18. Entrada: Femtoquímica:Viendo una reacción química paso a paso Blog: Cuentos Cuánticos Fecha de publicación: 28/11/2012 Autor: Enrique Fernández Borja 19. Entrada: Qué es un electrón en teoría cuántica de campos Blog: Francis (th)E mule Science News Fecha de publicación: 09/01/2013 Autor: Francisco R. Villatoro 20. Entrada: Ernest Lawrence y los inicios de la Gran Ciencia (I y II) Blog: Los Mundos de Brana Fecha de publicación: 09/04/2013 Autora: Laura Morrón

21. Entrada: Cómo viajar a la Luna Blog: Eureka Fecha de publicación: 03/01/2014 Autor: Daniel Marín 22. Entrada: El lado débil de la física (ii): Rompiendo la paridad + Chien-Shiung Wu, la gran física experimental (I y II) Blog: El zombi de Schrödinger + Los mundos de Brana Fecha de publicación: 04/02/2014 Autor: Jose M Morales + Laura Morrón

640px-DBP_1982_1148_Friedrich_Wöhler

En 1823, Leopold Gmelin, profesor en la Universidad de Heidelberg, movió sus contactos para que un sobresaliente alumno suyo, recién licenciado en medicina, fuese admitido como estudiante en el laboratorio de Estocolmo del químico vivo más importante de la época, Jöns Jakob Berzelius. Allí, Friedrich Wöhler, que así se llamaba el joven médico, se encontró, para su sorpresa, con que Berzelius no era partidario de las instrucciones sistemáticas, sino que prefería orientar a sus estudiantes en la investigación de los temas que éstos libremente habían escogido.

Friedrich Wöhler

Wöhler decidió investigar un tema al que ya había dedicado un tiempo al inicio de sus estudios de medicina en Marburgo: compuestos del ácido ciánico [HOCN] y el cianógeno [(CN)2]. Como parte de sus experimentos Wöhler intentaba sintetizar varios cianatos, entre ellos el de amonio. Intentó conseguir éste [NH4(OCN)] tratando cianato de plomo [Pb(OCN)2] con amoniaco [NH3] en medio acuoso. Tras calentar la disolución para prepararla para la cristalización se dio cuenta de que al enfriar aparecían unos cristales incoloros, que no pudo identificar en ese momento.

Justus von Liebig

Más o menos al mismo tiempo, en 1824, un jovencísimo Justus von Liebig, comenzaba a crear en la Universidad de Giessen, puesto que había obtenido por recomendación de Alexander von Humboldt con 21 años, la que sería primera gran escuela química del mundo. Con todo Liebig seguía fascinado con su pasión de niño, los explosivos. Así, preparó y analizó el fulminato de plata [AgONC]. Aquí el inteligente lector se habrá dado cuenta de que aunque usamos los mismos elementos, C, N, O, que cuando hablábamos del cianato hace un momento lo llamamos ahora de forma diferente, fulminato, y los ordenamos también de distinta manera. Esto es llamativo ahora, y lo fue en su momento para Liebig y Wöhler, que había preparado el cianato de plata [AgOCN] como parte de sus investigaciones.

Wöhler y Liebig tuvieron una discusión monumental, muy correcta, pero monumental. Pero los dos eran muy inteligentes a la par que excelentes químicos, por lo que pronto llegaron a la conclusión de que, a pesar de las apariencias, fulminato [ONC] y cianato [OCN] de plata tienen la misma composición elemental. Aquella discusión fue el inicio de una larga colaboración y amistad. Tanto es así que, andando el tiempo, Liebig y Wöhler encontrarían juntos el isocianato [NCO].

Gay-Lussac

Liebig había estudiado en París con Joseph-Louis Gay-Lussac y mantenía a su maestro al corriente de sus hallazgos. Gay-Lussac meditó sobre el asunto y llegó a la única conclusión posible que dejó por escrito en un editorial de Annales de chimie et de physique. Si tanto el análisis de Wöhler como el de Liebig eran correctos entonces:

[…]sería necesario, con objeto de explicar sus diferencias [en propiedades], admitir una forma diferente de combinación entre sus elementos.

Hoy día podemos escribir fórmulas semidesarrolladas para entender a qué se refería Gay-Lussac. El cianato tiene una estructura de enlaces [-O-C≡N], mientras que el fulminato es [-C=N-O·] y el isocianato [-N=C=O]

Esta es la primera descripción de la isomería, un nombre creado años después por Berzelius para los compuestos con la misma composición química pero diferentes propiedades físicas. Para 1830 se habían descrito ya varios casos de isomería, incluido el de los ácidos racémico y tartárico, que tanta importancia tendrían poco después en el descubrimiento de la estereoquímica.

Urea cianato

Wöhler, mientras tanto, seguía dándole vueltas a qué podrían ser esos cristales incoloros de su preparación de cianato de amonio. El concepto de isomería vino en su ayuda: el cianato [NH4(OCN)] reordenado no era otra cosa que urea [(NH2)2CO], que aparecía por isomerización. Como la química analítica instrumental simplemente no existía aún, las sustancias nuevas se caracterizaban por sus propiedades físicas y químicas; entre las propiedades físicas estaba la descripción del hábito cristalino.

Cristal de urea

Los cristales problemáticos los describió Wöhler como “prismas de cuatro lados en ángulo recto, bellamente cristalinos”. Un cristalógrafo reconoce rápidamente un intento de descripción de un cristal del sistema tetragonal. La urea cristaliza en el sistema tetragonal. Era 1828 y éste descubrimiento viene en los libros como el inicio de la química orgánica, puesto que, según dicen, era la primera vez que un compuesto orgánico (la urea está presente en la orina, entre otros lugares) era sintetizado en un laboratorio. Como Wöhler muy gráficamente le comunicaba a Berzelius:

[…]debo decirle que puedo fabricar urea sin necesitar tener riñones, o en cualquier caso, un animal, sea éste humano o perro

Sin embargo, la química orgánica tiene el mismo padre, Wöhler, pero una fecha de nacimiento y un hijo diferentes: Wöhler ya había obtenido en 1824 ácido oxálico durante sus experimentos con el cianógeno.

benzamidaEl polimorfismo de los cristales moleculares también fue documentado por primera vez por Wöhler y Liebig en 1832, en este caso en la benzamida. Cuando la disolución se dejaba enfriar, la benzamida cristaliza inicialmente en forma de agujas plateadas; tras un lapso de tiempo las agujas desaparecen para dar lugar a cristales ortorrómbicos. En los siguientes años aparecieron muchos más ejemplos y para 1897 Wilhelm Friedrich Ostwald ya podía dar reglas generales, entre ellas que, en general, no es la forma más estable sino el polimorfo menos estable el que cristaliza primero, esto es, la velocidad de cristalización viene determinada por la energía de activación y no por la energía reticular (la estabilidad).

Ordenaciones benzamidaQuizás convenga recordar que el polimorfismo de las sustancias orgánicas no es un asunto que esté resuelto en absoluto, de hecho es un tema de investigación candente. Los mecanismos no están bien explicados, en términos generales, satisfactoriamente. Sin ir más lejos la cristalización de la benzamida, descrita por Wöhler y Liebig, no obtuvo una descripción robusta de su mecanismo hasta 2007, 175 años después.

Mijaíl Lomonósov

No nos podemos sustraer a la tentación de mencionar finalmente a uno de los más grandes genios científicos que han existido y uno de los más desconocidos fuera de su Rusia natal, Mijaíl Vasilíevich Lomonósov. Y es que Lomonósov predijo la isomería un siglo antes que Wöhler y Liebig hiciesen su descubrimiento. Efectivamente, en sus Elementos de química matemática (1741)escribía:

[…]diferentes moléculas deben resultar del mismo número de los mismos átomos, si éstos se combinasen de forma diferente; deberían formarse cuerpos que poseerían distintas propiedades aunque tuviesen la misma composición.

Esta afirmación se enmarca en la visión de la materia que Lomonósov había plenamente desarrollado para mediados del siglo XVIII, a saber, que la materia está formada por átomos, que se combinan para formar moléculas. ¡Lomonósov usa “átomo” y “molécula” en los sentidos actuales de los términos! Por otra parte la materia se conserva (enunció este principio medio siglo antes que Lavoisier) y el calor no es otra cosa que movimiento atómico. Lomonósov hizo otros muchos descubrimientos, pero sus ideas iban más de un siglo por delante de su tiempo y solía escribir en ruso, por lo que su trabajo pasó desapercibido y fue rápidamente olvidado, sólo para ser redescubierto a principios del siglo XX.

Este texto es la novena parte de la serie Notas para una breve historia de la cristalografía.

Referencias generales de la serie:

[1] Wikipedia (enlazada en el texto)

[2] Cristalografía – CSIC

[3] Molčanov K. & Stilinović V. (2013). Chemical Crystallography before X-ray Diffraction., Angewandte Chemie (International ed. in English), PMID:

[4] Lalena J.N. (2006). From quartz to quasicrystals: probing nature’s geometric patterns in crystalline substances, Crystallography Reviews, 12 (2) 125-180. DOI:

[5] Kubbinga H. (2012). Crystallography from Haüy to Laue: controversies on the molecular and atomistic nature of solids, Zeitschrift für Kristallographie, 227 (1) 1-26. DOI:

[6] Schwarzenbach D. (2012). The success story of crystallography, Zeitschrift für Kristallographie, 227 (1) 52-62. DOI:

Esta entrada es una participación de Experientia docet en el II Festival de la Cristalografía que organiza Experientia docet y en la XXXI Edición del Carnaval de Química que acoge ::ZTFNews.

Himalaya isostasia

Hoy ha comenzado a publicarse en el Cuaderno de Cultura Científica nuestra nueva serie sobre conceptos básicos de ciencia con una anotación sobre la isostasia.

La serie De… pretende presentar, desde un punto de vista histórico, algunos conceptos fundamentales de la ciencia que, según nuestro criterio, toda persona culta debería conocer.

El título genérico de las anotaciones intenta reflejar cuatro intenciones a la hora de concebirlas. En primer lugar no son presentaciones sistemáticas o muy detalladas ya que no pretenden ser un texto definitivo sobre el asunto que se trata y, por eso mismo, y en segundo lugar, intentan ser una invitación a la exploración y al descubrimiento. En tercero, la presentación histórica puede ayudar a comprender mejor algunos conceptos y, finalmente, esta misma aproximación histórica tiene como objetivo presentar la ciencia como la actitud dinámica y sistemática de adquisión de conocimiento que es. Todo ello condensado en un simple De…

La serie De… aprecerá en la sección Experientia docet del Cuaderno de Cultura Científica todos los martes de 2014.